Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1350405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576792

RESUMEN

Naturally colored cotton (NCC) offers an environmentally friendly fiber for textile applications. Processing white cotton fiber into textiles requires extensive energy, water, and chemicals, whereas processing of NCC skips the most polluting activity, scouring-bleaching and dyeing; therefore, NCC provides an avenue to minimize the harmful impacts of textile production. NCC varieties are suitable for organic agriculture since they are naturally insect and disease-resistant, salt and drought-tolerant. Various fiber shades, ranging from light green to tan and brown, are available in the cultivated NCC (Gossypium hirsutum L.) species. The pigments responsible for the color of brown cotton fiber are proanthocyanidins or their derivatives synthesized by the flavonoid pathway. Due to pigments, the NCC has excellent ultraviolet protection properties. Some brown cotton varieties exhibited superior thermal resistance of fiber that can be used to make fabrics with enhanced flame retardancy. Here, we review molecular mechanisms involved in the pigment production of brown cotton and challenges in breeding NCC varieties with a wide range of colors but without penalty in fiber quality. Also, we discuss opportunities for NCC with flame-retarding properties in textile applications.

2.
Front Plant Sci ; 15: 1372232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545383

RESUMEN

Naturally-colored brown cotton (NBC) fiber is an environmentally friendly raw source of fiber for textile applications. The fiber of some NBC cultivars exhibits flame-retardant properties, which can be used in textiles that require flame resistance. Proanthocyanidins or their derivatives are responsible for the brown pigment in NBC; however, how flame retardancy is related to pigmentation in NBC is poorly understood. To gain insight into brown pigment biosynthesis, we conducted comparative transcripts and metabolites profiling analysis of developing cotton fibers between the brown (MC-BL) and white (MC-WL) cotton near-isogenic lines (NILs), genetically different only in the Lc1 locus. In this study, mass spectrometry was used to detect metabolites in BL and WL developing fibers at 8, 12, 16, 20, 24, 36, and 40 days post anthesis (DPA) and mature fibers. Transcripts analysis was performed at two critical fiber developmental points, 8 DPA (fiber elongation) and 20 DPA (secondary cell wall deposition). We found 5836 (ESI MS positive mode) and 4541 (ESI MS negative mode) metabolites significantly different accumulated between BL and WL. Among them, 142 were known non-redundant metabolites, including organic acids, amino acids, and derivatives of the phenylpropanoid pathway. Transcript analysis determined 1691 (8 DPA) and 5073 (20 DPA) differentially expressed genes (DEGs) between BL and WL, with the majority of DEGs down-regulated at 20 DPA. Organic acids of the citric acid cycle were induced, while most of the detected amino acids were reduced in the MC-BL line. Both cis- and trans-stereoisomers of flavan-3-ols were detected in developing MC-WL and MC-BL fibers; however, the gallocatechin and catechin accumulated multiple times higher. Gas chromatography-mass spectrometry (GC-MS) analysis of fatty acids determined that palmitic acid long-chain alcohols were the main constituents of waxes of mature fibers. Energy-dispersive X-ray spectrometry (EDS) analysis of mature fibers revealed that potassium accumulated three times greater in MC-BL than in MC-WL mature fibers. This study provides novel insights into the biosynthesis of pigments and its association with flame retardancy in NBC fibers.

3.
Plant Physiol Biochem ; 196: 940-951, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36889233

RESUMEN

The chemical and physical properties of vegetable oils are largely dictated by the ratios of 4-6 common fatty acids contained within each oil. However, examples of plant species that accumulate from trace amounts to >90% of certain unusual fatty acids in seed triacylglycerols have been reported. Many of the general enzymatic reactions that drive both common and unusual fatty acid biosynthesis and accumulation in stored lipids are known, but which isozymes have evolved to specifically fill this role and how they coordinate in vivo is still poorly understood. Cotton (Gossypium sp.) is the very rare example of a commodity oilseed that produces biologically relevant amounts of unusual fatty acids in its seeds and other organs. In this case, unusual cyclopropyl fatty acids (named after the cyclopropane and cyclopropene moieties within the fatty acids) are found in membrane and storage glycerolipids (e.g. seed oils). Such fatty acids are useful in the synthesis of lubricants, coatings, and other types of valuable industrial feedstocks. To characterize the role of cotton acyltransferases in cyclopropyl fatty acid accumulation for bioengineering applications, we cloned and characterized type-1 and type-2 diacylglycerol acyltransferases from cotton and compared their biochemical properties to that of litchi (Litchi chinensis), another cyclopropyl fatty acid-producing plant. The results presented from transgenic microbes and plants indicate both cotton DGAT1 and DGAT2 isozymes efficiently utilize cyclopropyl fatty acid-containing substrates, which helps to alleviate biosynthetic bottlenecks and enhances total cyclopropyl fatty acid accumulation in the seed oil.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Diglicéridos , Diacilglicerol O-Acetiltransferasa/genética , Gossypium/genética , Isoenzimas , Aciltransferasas , Plantas , Semillas/genética , Ácidos Grasos/química , Triglicéridos , Aceites de Plantas/química , Plantas Modificadas Genéticamente
4.
BMC Plant Biol ; 23(1): 147, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932365

RESUMEN

BACKGROUND: Cotton (Gossypium sp.) has been cultivated for centuries for its spinnable fibers, but its seed oil also possesses untapped economic potential if, improvements could be made to its oleic acid content. RESULTS: Previous studies, including those from our laboratory, identified pima accessions containing approximately doubled levels of seed oil oleic acid, compared to standard upland cottonseed oil. Here, the molecular properties of a fatty acid desaturase encoded by a mutant allele identified by genome sequencing in an earlier analysis were analyzed. The mutant sequence is predicted to encode a C-terminally truncated protein lacking nine residues, including a predicted endoplasmic reticulum membrane retrieval motif. We determined that the mutation was caused by a relatively recent movement of a Ty1/copia type retrotransposon that is not found associated with this desaturase gene in other sequenced cotton genomes. The mutant desaturase, along with its repaired isozyme and the wild-type A-subgenome homoeologous protein were expressed in transgenic yeast and stably transformed Arabidopsis plants. All full-length enzymes efficiently converted oleic acid to linoleic acid. The mutant desaturase protein produced only trace amounts of linoleic acid, and only when strongly overexpressed in yeast cells, indicating that the missing C-terminal amino acid residues are not strictly required for enzyme activity, yet are necessary for proper subcellular targeting to the endoplasmic reticulum membrane. CONCLUSION: These results provide the biochemical underpinning that links a genetic lesion present in a limited group of South American pima cotton accessions and their rare seed oil oleic acid traits. Markers developed to the mutant desaturase allele are currently being used in breeding programs designed to introduce this trait into agronomic upland cotton varieties.


Asunto(s)
Gossypium , Ácido Oléico , Ácido Oléico/metabolismo , Gossypium/metabolismo , Ácido Linoleico/análisis , Ácido Linoleico/metabolismo , Alelos , Saccharomyces cerevisiae/metabolismo , Yoduro de Potasio/metabolismo , Fitomejoramiento , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Semillas/metabolismo , Aceite de Semillas de Algodón/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
PLoS One ; 18(3): e0282799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893139

RESUMEN

Fiber length is one of the major properties determining the quality and commercial value of cotton. To understand the mechanisms regulating fiber length, genetic variations of cotton species and mutants producing short fibers have been compared with cultivated cottons generating long and normal fibers. However, their phenomic variation other than fiber length has not been well characterized. Therefore, we compared physical and chemical properties of the short fibers with the long fibers. Fiber characteristics were compared in two sets: 1) wild diploid Gossypium raimondii Ulbrich (short fibers) with cultivated diploid G. arboreum L and tetraploid G. hirsutum L. (long fibers); 2) G. hirsutum short fiber mutants, Ligon-lintless 1 (Li1) and 2 (Li2) with their near isogenic line (NIL), DP-5690 (long fibers). Chemical analyses showed that the short fibers commonly consisted of greater non-cellulosic components, including lignin and suberin, than the long fibers. Transcriptomic analyses also identified up-regulation of the genes related to suberin and lignin biosynthesis in the short fibers. Our results may provide insight on how high levels of suberin and lignin in cell walls can affect cotton fiber length. The approaches combining phenomic and transcriptomic analyses of multiple sets of cotton fibers sharing a common phenotype would facilitate identifying genes and common pathways that significantly influence cotton fiber properties.


Asunto(s)
Gossypium , Lignina , Gossypium/genética , Gossypium/metabolismo , Lignina/metabolismo , Transcriptoma , Fenómica , Genes de Plantas , Fibra de Algodón , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
PLoS One ; 18(1): e0278696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36652412

RESUMEN

Textiles made from cotton fibers are flammable and thus often include flame retardant additives for consumer safety. Transgressive segregation in multi-parent populations facilitates new combinations of alleles of genes and can result in traits that are superior to those of any of the parents. A screen of 257 recombinant inbred lines from a multi-parent advanced generation intercross (MAGIC) population for naturally enhance flame retardance (FR) was conducted. All eleven parents, like all conventional white fiber cotton cultivars produce flammable fabric. MAGIC recombinant inbred lines (RILs) that produced fibers with significantly lower heat release capacities (HRC) as measured by microscale combustion calorimetry (MCC) were identified and the stability of the phenotypes of the outliers were confirmed when the RILs were grown at an additional location. Of the textiles fabricated from the five superior RILs, four exhibited the novel characteristic of inherent flame resistance. When exposed to open flame by standard 45° incline flammability testing, these four fabrics self-extinguished. To determine the genetic architecture of this novel trait, linkage, epistatic and multi-locus genome wide association studies (GWAS) were conducted with 473k SNPs identified by whole genome sequencing (WGS). Transcriptomes of developing fiber cells from select RILs were sequenced (RNAseq). Together, these data provide insight into the genetic mechanism of the unexpected emergence of flame-resistant cotton by transgressive segregation in a breeding program. The incorporation of this trait into global cotton germplasm by breeding has the potential to greatly reduce the costs and impacts of flame-retardant chemicals.


Asunto(s)
Retardadores de Llama , Estudio de Asociación del Genoma Completo , Epistasis Genética , Textiles , Fibra de Algodón , Calorimetría
7.
Mol Genet Genomics ; 298(1): 143-152, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36346467

RESUMEN

Introgression of superior fiber traits from Pima cotton (Gossypium barbadense, GB) into high yield Upland cotton (G. hirsutum) has been a breeding objective for many years in a few breeding programs in the world. However, progress has been very slow due to introgression barriers resulting from whole genome hybridization between the two species. To minimize such barriers, chromosome substitution lines (CS-B) from Pima cotton 3-79 in an Upland cotton cultivar TM-1 were developed. A multiparent advanced generation inter-cross (MAGIC) population consisting of 180 recombinant inbred lines (RILs) was subsequently made using the 18 CS-B lines and three Upland cotton cultivars as parents. In this research, we sequenced the whole genomes of the 21 parents and 180 RILs to examine the G. barbadense introgression. Of the 18 CS-B lines, 11 contained the target GB chromosome or chromosome segment, two contained more than two GB chromosomes, and five did not have the expected introgression. Residual introgression in non-target chromosomes was prevalent in all CS-B lines. A clear structure existed in the MAGIC population and the 180 RILs were distributed into three groups, i.e., high, moderate, and low GB introgression. Large blocks of GB chromosome introgression were still present in some RILs after five cycles of random-mating, an indication of recombination suppression or other unknown reasons present in the population. Identity by descent analysis revealed that the MAGIC RILs contained less introgression than expected. This research presents an insight on understanding the complex problems of introgression between cotton species.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/genética , Yoduro de Potasio , Cruzamientos Genéticos , Fitomejoramiento , Genómica
8.
Plant Physiol ; 190(3): 1792-1805, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35997586

RESUMEN

Most cultivated cotton (Gossypium hirsutum L.) varieties have two types of seed fibers: short fuzz fiber strongly adhered to the seed coat, and long lint fiber used in the textile industry. The Ligon lintless-2 (Li2) cotton mutant has a normal vegetative phenotype but produces very short lint fiber on the seeds. The Li2 mutation is controlled by a single dominant gene. We discovered a large structural rearrangement at the end of chromosome D13 in the Li2 mutant based on whole-genome sequencing and genetic mapping of segregating populations. The rearrangement contains a 177-kb deletion and a 221-kb duplication positioned as a tandem inverted repeat. The gene Gh_D13G2437 is located at the junction of the inverted repeat in the duplicated region. During transcription such structure spontaneously forms self-complementary hairpin RNA of Gh_D13G2437 followed by production of small interfering RNA (siRNA). Gh_D13G2437 encodes a Ran-Binding Protein 1 (RanBP1) that preferentially expresses during cotton fiber elongation. The abundance of siRNA produced from Gh_D13G2437 reciprocally corresponds with the abundance of highly homologous (68%-98% amino acid sequence identity) RanBP1 family transcripts during fiber elongation, resulting in a shorter fiber phenotype in the Li2. Overexpression of Gh_D13G2437 in the Li2 mutant recovered the long lint fiber phenotype. Taken together, our findings revealed that siRNA-induced silencing of a family of RanBP1s inhibit elongation of cotton fiber cells in the Li2 mutant.


Asunto(s)
Fibra de Algodón , Genes de Plantas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo
9.
Theor Appl Genet ; 135(7): 2297-2312, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35577933

RESUMEN

KEY MESSAGE: A major QTL conferring resistance to Fusarium wilt race 4 in a narrow region of chromosome D02 was identified in a MAGIC population of 550 RILs of Upland cotton. Numerous studies have been conducted to investigate the genetic basis of Fusarium wilt (FW, caused by Fusarium oxysporum f. sp. vasinfectum, FOV) resistance using bi-parental and association mapping populations in cotton. In this study, a multi-parent advanced generation inter-cross (MAGIC) population of 550 recombinant inbred lines (RILs), together with their 11 Upland cotton (Gossypium hirsutum) parents, was used to identify QTLs for FOV race 4 (FOV4) resistance. Among the parents, Acala Ultima, M-240 RNR, and Stoneville 474 were the most resistant, while Deltapine Acala 90, Coker 315, and Stoneville 825 were the most susceptible. Twenty-two MAGIC lines were consistently resistant to FOV4. Through a genome-wide association study (GWAS) based on 473,516 polymorphic SNPs, a major FOV4 resistance QTL within a narrow region on chromosomes D02 was detected, allowing identification of 14 candidate genes. Additionally, a meta-analysis of 133 published FW resistance QTLs showed a D subgenome and individual chromosome bias and no correlation between homeologous chromosome pairs. This study represents the first GWAS study using a largest genetic population and the most comprehensive meta-analysis for FW resistance in cotton. The results illustrated that 550 lines were not enough for high resolution mapping to pinpoint a candidate gene, and experimental errors in phenotyping cotton for FW resistance further compromised the accuracy and precision in QTL localization and identification of candidate genes. This study identified FOV4-resistant parents and MAGIC lines, and the first major QTL for FOV4 resistance in Upland cotton, providing useful information for developing FOV4-resistant cultivars and further genomic studies towards identification of causal genes for FOV4 resistance in cotton.


Asunto(s)
Fusarium , Gossypium , Estudio de Asociación del Genoma Completo , Gossypium/genética , Enfermedades de las Plantas/genética
10.
Commun Biol ; 5(1): 60, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039628

RESUMEN

Cotton (Gossypium hirsutum L.) fiber is the most important resource of natural and renewable fiber for the textile industry. However, the understanding of genetic components and their genome-wide interactions controlling fiber quality remains fragmentary. Here, we sequenced a multiple-parent advanced-generation inter-cross (MAGIC) population, consisting of 550 individuals created by inter-crossing 11 founders, and established a mosaic genome map through tracing the origin of haplotypes that share identity-by-descent (IBD). We performed two complementary GWAS methods-SNP-based GWAS (sGWAS) and IBD-based haplotype GWAS (hGWAS). A total of 25 sQTLs and 14 hQTLs related to cotton fiber quality were identified, of which 26 were novel QTLs. Two major QTLs detected by both GWAS methods were responsible for fiber strength and length. The gene Ghir_D11G020400 (GhZF14) encoding the MATE efflux family protein was identified as a novel candidate gene for fiber length. Beyond the additive QTLs, we detected prevalent epistatic interactions that contributed to the genetics of fiber quality, pinpointing another layer for trait variance. This study provides new targets for future molecular design breeding of superior fiber quality.


Asunto(s)
Fibra de Algodón/análisis , Genoma de Planta , Gossypium/genética , Fenotipo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Gossypium/crecimiento & desarrollo
11.
PLoS One ; 16(12): e0259562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34898615

RESUMEN

Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.


Asunto(s)
Gossypium/genética , Proteínas de Plantas/genética , Fibra de Algodón/análisis , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Luz , Mutación , Fenotipo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Temperatura
12.
Mol Genet Genomics ; 296(5): 1041-1049, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34110475

RESUMEN

Cotton fiber mutants are valuable resources for studying functions of altered genes and their roles in fiber development. The n4t is a recessive tufted-fuzzless seed mutant created through chemical mutagenesis with ethyl methanesulfonate. Genetic analysis indicated that the tufted-fuzzless phenotype is controlled by a single recessive locus. In this study, we developed an F2 population of 602 progeny plants and sequenced the genomes of the parents and two DNA bulks from F2 progenies showing the mutant phenotype. We identified DNA sequence variants between the tufted-fuzzless mutant and wild type by aligning the sequence reads to the reference TM-1 genome and designed subgenome-specific SNP markers. We mapped the n4t locus on chromosome D04 within a genomic interval of about 411 kb. In this region, seven genes showed significant differential expression between the tufted-fuzzless mutant and wild type. Possible candidate genes are discussed in this study. The utilization of the n4t mutant along with other fiber mutants will facilitate our understanding of the molecular mechanisms of cotton fiber cell growth and development.


Asunto(s)
Fibra de Algodón , Genes de Plantas , Gossypium/genética , Semillas/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas , Cruzamientos Genéticos , Metanosulfonato de Etilo/toxicidad , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Gossypium/efectos de los fármacos , Mutación , Polimorfismo de Nucleótido Simple , Semillas/efectos de los fármacos , Semillas/fisiología
13.
Mol Genet Genomics ; 296(1): 119-129, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33051724

RESUMEN

Cotton is grown in arid and semi-arid regions where abiotic stresses such as drought and salt are prevalent. There is a lack of studies that simultaneously address the genetic and genomic basis of tolerance to drought and salt stress. In this study, a multi-parent advanced generation inter-cross (MAGIC) population of 550 recombinant inbred lines (RILs) together with their 11 Upland cotton parents with a total of 473,516 polymorphic SNP markers was used to identify quantitative trait loci (QTL) for drought tolerance (DT) and salt tolerance (ST) at the seedling stage based on two replicated greenhouse tests. Transgressive segregation occurred in the MAGIC-RILs, indicating that tolerant and sensitive alleles recombined for tolerance to the abiotic stress during the intermating process for the population development. A total of 20 QTL were detected for DT including 13 and 7 QTL based on plant height (PH) and dry shoot weight (DSW), respectively; and 23 QTL were detected for ST including 12 and 11 QTL for PH and DSW, respectively. There were several chromosomes with QTL clusters for abiotic stress tolerance including four QTL on chromosome A13 and three QTL on A01 for DT, and four QTL on D08 and three QTL on A11 for ST. Nine QTL (21% of the 43 QTL) detected were in common between DT and ST, indicating a common genetic basis for DT and ST. The narrow chromosomal regions for most of the QTL detected in this study allowed identification of 53 candidate genes associated with responses to salt and drought stress and abiotic stimulus. The QTL identified for both DT and ST have significantly augmented the repertoire of QTL for abiotic stress tolerance that can be used for marker-assisted selection to develop cultivars with resilience to drought and/or salt and further genomic studies towards the identification of drought and salt tolerance genes in cotton.


Asunto(s)
Cromosomas de las Plantas/química , Gossypium/genética , Sitios de Carácter Cuantitativo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Mapeo Cromosómico , Fibra de Algodón/análisis , Cruzamientos Genéticos , Sequías , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Fitomejoramiento , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Salinidad , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
14.
Mol Genet Genomics ; 296(1): 193-206, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33141290

RESUMEN

Most commercially produced cotton cultivars have two types of fibers on the seed coat, short fuzz and long lint. Lint fiber is used in the textile industry, while fuzz is considered an undesirable trait. Both types of fibers are believed to be controlled by the same regulators; however, their mechanisms of actions are still obscure. Cotton fiber mutants provide an excellent system to study the genes that regulate fiber development. Here we described four uncharacterized and three previously reported cotton mutants with fuzzless seed phenotypes. To evaluate whether or not the genes previously associated with fuzzless seed phenotypes have mutations we sequenced whole genomic DNA of seven mutants and wild type varieties. We identified multiple polymorphic changes among the tested genes. Non-synonymous SNPs in the coding region of the MML3-A gene was common in the six mutant lines tested in this study, showing both dominant and recessive fuzzless phenotypes. We have mapped the locus of the causative mutation for one of the uncharacterized fuzzless lines using an F2 population that originated from a cross between the dominant fuzzless mutant and a wild type. Further, we have clarified the current knowledge about the causative n2 mutations by analyzing the sequence data and previously reported mapping data. The key genes and possible mechanisms of fiber differentiation are discussed in this study.


Asunto(s)
Cromosomas de las Plantas/química , Fibra de Algodón/análisis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cruzamientos Genéticos , Genes Dominantes , Genes Recesivos , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Mutación , Fenotipo , Fitomejoramiento , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
15.
New Phytol ; 226(6): 1738-1752, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32017125

RESUMEN

The cotton fibre serves as a valuable experimental system to study cell wall synthesis in plants, but our understanding of the genetic regulation of this process during fibre development remains limited. We performed a genome-wide association study (GWAS) and identified 28 genetic loci associated with fibre quality in allotetraploid cotton. To investigate the regulatory roles of these loci, we sequenced fibre transcriptomes of 251 cotton accessions and identified 15 330 expression quantitative trait loci (eQTL). Analysis of local eQTL and GWAS data prioritised 13 likely causal genes for differential fibre quality in a transcriptome-wide association study (TWAS). Characterisation of distal eQTL revealed unequal genetic regulation patterns between two subgenomes, highlighted by an eQTL hotspot (Hot216) that established a genome-wide genetic network regulating the expression of 962 genes. The primary regulatory role of Hot216, and specifically the gene encoding a KIP-related protein, was found to be the transcriptional regulation of genes responsible for cell wall synthesis, which contributes to fibre length by modulating the developmental transition from rapid cell elongation to secondary cell wall synthesis. This study uncovered the genetic regulation of fibre-cell development and revealed the molecular basis of the temporal modulation of secondary cell wall synthesis during plant cell elongation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Pared Celular/genética , Fibra de Algodón , Redes Reguladoras de Genes , Gossypium/genética , Sitios de Carácter Cuantitativo/genética
16.
Theor Appl Genet ; 133(1): 271-282, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31624873

RESUMEN

KEY MESSAGE: The EMS-induced threonine/isoleucine substitution in a tetratricopeptide repeat-like superfamily protein encoded by gene Ghir_A12G008870 is responsible for the Ligon-lintless-y (liy) short fiber phenotype in cotton. A short fiber mutant Ligon-lintless-y was created through treating the seeds of the cotton line MD15 with ethyl methanesulfonate. Genetic analysis indicated that the short fiber phenotype is controlled by a single recessive locus designated liy. From F2 populations derived from crosses between the mutant and its wild type (WT), we selected 132 short fiber progeny (liy/liy) and made two DNA bulks. We sequenced these DNA bulks along with the two parents of the population. The liy locus was located on chromosome A12. Using multiple F2 populations and F3 progeny plants, we mapped the liy locus within a genomic region of 1.18 Mb. In this region, there is only one gene, i.e., Ghir_A12G008870 encoding a tetratricopeptide repeat-like superfamily protein that has a non-synonymous mutation between the liy mutant and its WT. Analysis of a SNP marker representing this gene in the F2 and F3 progeny plants demonstrated its complete linkage with the liy short fiber phenotype. We further analyzed this SNP marker in a panel of 384 cotton varieties. The mutant allele is absent in all varieties analyzed. RNAseq and RT-qPCR analysis of the gene Ghir_A12G008870 during fiber development showed a significant expression difference between the liy mutant and its WT in developing fiber cells beginning at 12 days post-anthesis. Virus-induced gene silencing of the gene Ghir_A12G008870 significantly reduced the fiber length of the WT cotton line MD15. Taken together, our results suggest that the gene Ghir_A12G008870 is involved in the cotton fiber cell elongation process and is a promising candidate gene responsible for the liy short fiber phenotype.


Asunto(s)
Cromosomas de las Plantas/genética , Fibra de Algodón , Metanosulfonato de Etilo/metabolismo , Genes de Plantas , Gossypium/genética , Mutación/genética , Repeticiones de Tetratricopéptidos , Secuencia de Bases , Mapeo Cromosómico , Segregación Cromosómica/genética , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Sitios Genéticos , Marcadores Genéticos , Fenotipo , Polimorfismo Genético , Factores de Tiempo
17.
BMC Genomics ; 20(1): 112, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30727946

RESUMEN

BACKGROUND: Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. RESULTS: An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. CONCLUSION: The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement.


Asunto(s)
Fibra de Algodón , Gossypium/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transcriptoma , Alelos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Gossypium/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética
18.
Theor Appl Genet ; 132(5): 1425-1434, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30741320

RESUMEN

KEY MESSAGE: MAGIC population sequencing and virus-induced gene silencing identify Gh_D02G0276 as a novel root-knot nematode resistance gene on chromosome 14 in Upland cotton. The southern root-knot nematode [RKN; Meloidogyne incognita (Kofoid & White)] remains the primary yield-limiting biotic stress to Upland cotton (Gossypium hirsutum L.) throughout the southeastern USA. While useful genetic markers have been developed for two major RKN resistance loci on chromosomes 11 (A11) and 14 (D02), these markers are not completely effective because the causative genes have not been identified. Here, we sequenced 550 recombinant inbred lines (RILs) from a multi-parent advanced generation intercross (MAGIC) population to identify five RILs that had informative recombinations near the D02-RKN resistance locus. The RKN resistance phenotypes of these five RILs narrowed the D02-RKN locus to a 30-kb region with four candidate genes. We conducted virus-induced gene silencing (VIGS) on each of these genes and found that Gh_D02G0276 was required for suppression of RKN egg production conferred by the Chr. D02 resistance gene. The resistant lines all possessed an allele of Gh_D02G0276 that showed non-synonymous mutations and was prematurely truncated. Furthermore, a Gh_D02G0276-specific marker for the resistance allele variant was able to identify RKN-resistant germplasm from a collection of 367 cotton accessions. The Gh_D02G0276 peptide shares similarity with domesticated hAT-like transposases with additional novel N- and C-terminal domains that resemble the target of known RKN effector molecules and a prokaryotic motif, respectively. The truncation in the resistance allele results in a loss of a plant nuclear gene-specific C-terminal motif, potentially rendering this domain antigenic due to its high homology with bacterial proteins. The conclusive identification of this RKN resistance gene opens new avenues for understanding plant resistance mechanisms to RKN as well as opportunities to develop more efficient marker-assisted selection in cotton breeding programs.


Asunto(s)
Genes de Plantas , Gossypium/genética , Nematodos/fisiología , Animales , Biología Computacional , Silenciador del Gen , Variación Genética , Genotipo , Técnicas de Genotipaje , Gossypium/parasitología
19.
Theor Appl Genet ; 132(4): 989-999, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30506522

RESUMEN

KEY MESSAGE: Significant associations between candidate genes and six major cotton fiber quality traits were identified in a MAGIC population using GWAS and whole genome sequencing. Upland cotton (Gossypium hirsutum L.) is the world's major renewable source of fibers for textiles. To identify causative genetic variants that influence the major agronomic measures of cotton fiber quality, which are used to set discount or premium prices on each bale of cotton in the USA, we measured six fiber phenotypes from twelve environments, across three locations and 7 years. Our 550 recombinant inbred lines were derived from a multi-parent advanced generation intercross population and were whole-genome-sequenced at 3× coverage, along with the eleven parental cultivars at 20× coverage. The segregation of 473,517 single nucleotide polymorphisms (SNPs) in this population, including 7506 non-synonymous mutations, was combined with phenotypic data to identify seven highly significant fiber quality loci. At these loci, we found fourteen genes with non-synonymous SNPs. Among these loci, some had simple additive effects, while others were only important in a subset of the population. We observed additive effects for elongation and micronaire, when the three most significant loci for each trait were examined. In an informative subset where the major multi-trait locus on chromosome A07:72-Mb was fixed, we unmasked the identity of another significant fiber strength locus in gene Gh_D13G1792 on chromosome D13. The micronaire phenotype only revealed one highly significant genetic locus at one environmental location, demonstrating a significant genetic by environment component. These loci and candidate causative variant alleles will be useful to cotton breeders for marker-assisted selection with minimal linkage drag and potential biotechnological applications.


Asunto(s)
Fibra de Algodón/normas , Cruzamientos Genéticos , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genómica/métodos , Gossypium/genética , Secuenciación Completa del Genoma , Cromosomas de las Plantas/genética , Gossypium/anatomía & histología , Endogamia , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
20.
BMC Plant Biol ; 18(1): 186, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200872

RESUMEN

BACKGROUND: Weed management is critical to global crop production and is complicated by rapidly evolving herbicide resistance in weeds. New sources of herbicide resistance are needed for crop plants so that applied herbicides can be rotated or combined to thwart the evolution of resistant weeds. The diverse family of cytochrome P450 proteins has been suggested to be a source of detoxifying herbicide metabolism in both weed and crop plants, and greater understanding of these genes will offer avenues for crop improvement and novel weed management practices. RESULTS: Here, we report the identification of CYP749A16 (Gh_D10G1401) which is responsible for the natural tolerance exhibited by most cotton, Gossypium hirsutum L., cultivars to the herbicide trifloxysulfuron sodium (TFS, CGA 362622, commercial formulation Envoke). A 1-bp frameshift insertion in the third exon of CYP749A16 results in the loss of tolerance to TFS. The DNA marker designed from this insertion perfectly co-segregated with the phenotype in 2145 F2 progeny of a cross between the sensitive cultivar Paymaster HS26 and tolerant cultivar Stoneville 474, and in 550 recombinant inbred lines of a multi-parent advanced generation inter-cross population. Marker analysis of 382 additional cotton cultivars identified twelve cultivars containing the 1-bp frameshift insertion. The marker genotypes matched perfectly with phenotypes in 188 plants from the selected twelve cultivars. Virus-induced gene silencing of CYP749A16 generated sensitivity in the tolerant cotton cultivar Stoneville 474. CONCLUSIONS: CYP749A16 located on chromosome D10 is required for TFS herbicide tolerance in cotton. This finding should add to the repertoire of tools available to farmers and breeders for the advancement of agricultural productivity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Gossypium/genética , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Piridinas/toxicidad , Sulfonamidas/toxicidad , Mapeo Cromosómico , Cromosomas de las Plantas , Silenciador del Gen , Gossypium/efectos de los fármacos , Gossypium/enzimología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...